ค่าเฉลี่ยเคลื่อนที่เฉลี่ยแรกคือ 4310 ซึ่งเป็นค่าสังเกตแรก (ในการวิเคราะห์อนุกรมเวลาตัวเลขแรกในชุดค่าเฉลี่ยเคลื่อนที่จะไม่ถูกคำนวณเป็นค่าที่หายไป) ค่าเฉลี่ยเคลื่อนที่ต่อไปคือค่าเฉลี่ยของการสังเกตแรกสอง (4310 4400) 2 4355 ค่าเฉลี่ยเคลื่อนที่ที่สามคือ ค่าเฉลี่ยของการสังเกต 2 และ 3, (4400 4000) 2 4200 และอื่น ๆ ถ้าคุณต้องการใช้ค่าเฉลี่ยเคลื่อนที่ของความยาว 3 ค่าสามค่าจะถูกแทนค่าเฉลี่ยสองค่า Copyright 2016 Minitab Inc. สงวนลิขสิทธิ์ เมื่อใช้ไซต์นี้ถือว่าคุณยอมรับการใช้คุกกี้สำหรับการวิเคราะห์และเนื้อหาในแบบของคุณ อ่านนโยบายของเรา 6.2 ค่าเฉลี่ยเคลื่อนที่ 40 maecsales, order 5 41 ในคอลัมน์ที่สองของตารางนี้จะแสดงค่าเฉลี่ยเคลื่อนที่ของลำดับที่ 5 แสดงค่าประมาณของรอบการหมุนเวียน ค่าแรกในคอลัมน์นี้คือค่าเฉลี่ยของห้าข้อสังเกตแรก (1989-1993) ค่าที่สองในคอลัมน์ 5-MA คือค่าเฉลี่ยของค่า 1990-1994 และอื่น ๆ แต่ละค่าในคอลัมน์ 5-MA คือค่าเฉลี่ยของการสังเกตในระยะเวลาห้าปีที่ตรงกลางกับปีที่สอดคล้องกัน ไม่มีค่าสำหรับสองปีแรกหรือสองปีที่ผ่านมาเนื่องจากเราไม่มีข้อสังเกตสองด้าน ในสูตรด้านบนคอลัมน์ 5-MA มีค่าหมวกกับ k2 หากต้องการดูว่ามีการคาดการณ์แนวโน้มของวงจรแนวโน้มใดเราจะคำนวณพล็อตพร้อมกับข้อมูลต้นฉบับในรูปที่ 6.7 พล็อต 40 elecsales, main quotResidential ขายไฟฟ้า quot, ylab quotGWhquot สังเกตว่าแนวโน้ม (สีแดง) นุ่มนวลกว่าข้อมูลเดิมและจับภาพการเคลื่อนไหวหลักของชุดข้อมูลเวลาโดยไม่มีความผันผวนเล็กน้อยทั้งหมด วิธีเฉลี่ยเคลื่อนที่ไม่อนุญาตให้มีการประมาณค่า T ซึ่ง t อยู่ใกล้กับปลายของชุดดังนั้นเส้นสีแดงจึงไม่ขยายไปยังขอบของกราฟทั้งสองด้าน ต่อมาเราจะใช้วิธีการประเมินแนวโน้มรอบแนวโน้มที่มีความซับซ้อนมากขึ้นซึ่งจะอนุญาตให้มีการประมาณใกล้จุดสิ้นสุด ลำดับของค่าเฉลี่ยเคลื่อนที่จะเป็นตัวกำหนดความเรียบของการประมาณแนวโน้มรอบ โดยทั่วไปคำสั่งที่มีขนาดใหญ่หมายถึงเส้นโค้งที่นุ่มนวล กราฟต่อไปนี้แสดงผลของการเปลี่ยนแปลงลำดับของค่าเฉลี่ยเคลื่อนที่สำหรับข้อมูลการขายไฟฟ้าที่อยู่อาศัย ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายเช่นนี้มักเป็นคำสั่งแปลก ๆ (เช่น 3, 5, 7, ฯลฯ ) ซึ่งเป็นสมมาตร: ในค่าเฉลี่ยเคลื่อนที่ของคำสั่ง m2k1 มีการสังเกตก่อนหน้านี้ k สังเกตการณ์ในภายหลังและการสังเกตการณ์กลาง ที่มีค่าเฉลี่ย แต่ถ้ามมก็จะไม่สมมาตรอีกต่อไป ค่าเฉลี่ยเคลื่อนที่ของค่าเฉลี่ยเคลื่อนที่ (moving average) ค่าเฉลี่ยเคลื่อนที่ (moving average) เป็นค่าเฉลี่ยเคลื่อนที่ เหตุผลหนึ่งในการทำเช่นนี้คือการทำให้สมมุติฐานค่าเฉลี่ยของค่าเฉลี่ยที่เท่ากัน ตัวอย่างเช่นเราอาจใช้ค่าเฉลี่ยเคลื่อนที่ของลำดับที่ 4 จากนั้นให้ใช้ค่าเฉลี่ยเคลื่อนที่อื่นของคำสั่งที่ 2 ต่อผลลัพธ์ ในตารางที่ 6.2 ข้อมูลนี้ถูกสร้างขึ้นในช่วงไม่กี่ปีแรกของข้อมูลการผลิตเบียร์รายไตรมาสของออสเตรเลีย beer2 lt - หน้าต่าง 40 ausbeer เริ่ม 1992 41 ma4 lt-ma 40 beer2 ลำดับที่ 4. ศูนย์ FALSE 41 ma2x4 lt-ma 40 beer2 ลำดับที่ 4. ศูนย์ TRUE 41 สัญกรณ์ 2times4-MA ในคอลัมน์สุดท้ายหมายถึง 4-MA ตามด้วย 2-MA ค่าในคอลัมน์สุดท้ายจะได้รับโดยการคำนวณค่าเฉลี่ยเคลื่อนที่ของลำดับที่ 2 ของค่าในคอลัมน์ก่อนหน้า ตัวอย่างเช่นสองค่าแรกในคอลัมน์ 4-MA คือ 451.2 (443410420532) 4 และ 448.8 (410420532433) 4 ค่าแรกในคอลัมน์ 2times4-MA คือค่าเฉลี่ยของทั้งสอง: 450.0 (451.2448.8) 2. เมื่อ 2-MA ตามค่าเฉลี่ยเคลื่อนที่ของลำดับคู่ (เช่น 4) จะเรียกว่าค่าเฉลี่ยเคลื่อนที่ที่ศูนย์กลางของคำสั่ง 4 เนื่องจากผลลัพธ์นี้สมมาตร เพื่อดูว่าเป็นกรณีนี้เราสามารถเขียน 2times4-MA ดังต่อไปนี้: เริ่มต้นแอมป์หมวก frac Bigfrac (y y y y) frac (y y y y) frac18y frac18y frac18y frac end ตอนนี้มันเป็นค่าเฉลี่ยถ่วงน้ำหนักของการสังเกต แต่มันเป็นสมมาตร การรวมกันของค่าเฉลี่ยเคลื่อนที่อื่น ๆ ก็เป็นไปได้ ตัวอย่างเช่นมักใช้ 3times3-MA และประกอบด้วยค่าเฉลี่ยเคลื่อนที่ของคำสั่งที่ 3 ตามด้วยค่าเฉลี่ยเคลื่อนที่อื่นของคำสั่ง 3 โดยทั่วไปคำสั่ง MA แม้จะต้องตามด้วยคำสั่ง MA ที่ทำให้เป็นสมมาตร ในทำนองเดียวกันคำสั่งแปลก ๆ ของ MA ควรเป็นไปตามคำสั่งแบบแปลก ๆ ของ MA การประมาณแนวโน้มรอบกับข้อมูลตามฤดูกาลการใช้ค่าเฉลี่ยเคลื่อนที่โดยรวมที่ใช้บ่อยที่สุดคือการประมาณแนวโน้มรอบจากข้อมูลตามฤดูกาล พิจารณา 2times4-MA: frac18y frac18y frac18y เมื่อนำไปใช้กับข้อมูลรายไตรมาสในแต่ละไตรมาสจะได้รับน้ำหนักเท่ากันเป็นครั้งแรกและครั้งสุดท้ายที่ใช้กับไตรมาสเดียวกันในปีต่อเนื่อง ดังนั้นความแปรผันตามฤดูกาลจะได้รับการเฉลี่ยและค่าที่ได้จากหมวกจะมีการเปลี่ยนแปลงตามฤดูกาลเพียงเล็กน้อยหรือไม่มีเลย ผลที่คล้ายกันจะได้รับโดยใช้ 2times 8-MA หรือ 2times 12-MA โดยทั่วไปแล้ว 2times m-MA จะเท่ากับค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักของคำสั่ง m1 กับการสังเกตทั้งหมดที่มีน้ำหนัก 1 เมตรยกเว้นเงื่อนไขแรกและครั้งสุดท้ายที่ใช้น้ำหนัก 1 (2 เมตร) ดังนั้นถ้าระยะเวลาตามฤดูกาลเป็นไปได้และมีคำสั่ง m ให้ใช้ 2times m-MA เพื่อประมาณแนวโน้มรอบ ถ้าระยะเวลาตามฤดูกาลเป็นเลขคี่และจากคำสั่ง m ให้ใช้ m-MA เพื่อประมาณวัฏจักรของแนวโน้ม โดยเฉพาะช่วงเวลา 2 เดือน 12-MA สามารถใช้ในการประมาณวัฏจักรของข้อมูลรายเดือนและ 7-MA สามารถใช้ในการประมาณแนวโน้มรอบของข้อมูลรายวัน ตัวเลือกอื่น ๆ สำหรับคำสั่งของ MA มักจะส่งผลให้ประมาณการแนวโน้มรอบถูกปนเปื้อนตามฤดูกาลในข้อมูล ตัวอย่าง 6.2 การผลิตอุปกรณ์ไฟฟ้ารูปที่ 6.9 แสดงค่า 2times12-MA ที่ใช้กับดัชนีการสั่งซื้ออุปกรณ์ไฟฟ้า สังเกตว่าเส้นเรียบแสดงให้เห็นว่าไม่มีฤดูกาลใดใกล้เคียงกับวัฏจักรของแนวโน้มที่แสดงในรูปที่ 6.2 ซึ่งใช้วิธีการที่ซับซ้อนมากขึ้นกว่าค่าเฉลี่ยเคลื่อนที่ ทางเลือกอื่น ๆ สำหรับคำสั่งของค่าเฉลี่ยเคลื่อนที่ (ยกเว้น 24, 36 ฯลฯ ) จะส่งผลให้เส้นเรียบที่แสดงความผันผวนบางฤดูกาล พล็อต 40 elecequip, ylab quot คำสั่งซื้อใหม่ indexquot col quotgrayquot การผลิตอุปกรณ์ไฟฟ้าหลัก (Euro area) 41 บรรทัด 40 ma 40 elecequip, order 12 41. col quotredquot 41 ค่าเฉลี่ยถ่วงน้ำหนักการรวมกันของค่าเฉลี่ยเคลื่อนที่จะส่งผลให้ค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนัก ตัวอย่างเช่น 2x4-MA ที่พูดถึงข้างต้นจะเทียบเท่ากับน้ำหนัก 5-MA ที่มีน้ำหนักให้โดย frac, frac, frac, frac, frac โดยทั่วไปแล้ว m-MA ที่ถ่วงน้ำหนักสามารถเขียนเป็น hat t sum k aj y โดยที่ k (m-1) 2 และน้ำหนักโดยจุด a เป็นสิ่งสำคัญที่น้ำหนักทั้งหมดรวมกันเพื่อให้หนึ่งและว่าพวกเขาจะสมมาตรเพื่อให้ aj a. ง่าย m-MA เป็นกรณีพิเศษที่น้ำหนักทั้งหมดมีค่าเท่ากับ 1m ข้อได้เปรียบที่สำคัญของค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักคือให้ค่าประมาณของวงจรแนวโน้ม แทนที่จะสังเกตการป้อนและออกจากการคำนวณที่น้ำหนักเต็มน้ำหนักของพวกเขาจะเพิ่มขึ้นอย่างช้าๆและจากนั้นค่อยๆลดลงส่งผลให้เส้นโค้งเรียบ ใช้ชุดน้ำหนักที่เฉพาะเจาะจงบางชุด บางส่วนของข้อมูลเหล่านี้มีให้ในตาราง 6.3.OANDA ใช้คุกกี้เพื่อทำให้เว็บไซต์ของเราใช้งานง่ายและปรับแต่งให้เหมาะกับผู้เยี่ยมชมของเรา ไม่สามารถใช้คุกกี้เพื่อระบุตัวคุณได้ เมื่อไปที่เว็บไซต์ของเราคุณยินยอมให้ OANDA8217s ใช้คุกกี้ตามนโยบายส่วนบุคคลของเรา หากต้องการบล็อกลบหรือจัดการคุกกี้โปรดไปที่ aboutcookies. org การ จำกัด คุกกี้จะป้องกันไม่ให้คุณได้รับประโยชน์จากฟังก์ชันการทำงานบางอย่างในเว็บไซต์ของเรา ดาวน์โหลด Apps มือถือของเราเปิดบัญชี ampltiframe src4489469.fls. doubleclickactivityisrc4489469typenewsi0catoanda0u1fxtradeiddclatdcrdidtagforchilddirectedtreatmentord1num1 mcesrc4489469.fls. doubleclickactivityisrc4489469typenewsi0catoanda0u1fxtradeiddclatdcrdidtagforchilddirectedtreatmentord1num1 width1 height1 frameborder0 styledisplay: ไม่มี mcestyledisplay: noneampgtampltiframeampgt บทที่ 1: การย้ายค่าเฉลี่ยประเภทของการย้ายค่าเฉลี่ยมีหลายประเภทของค่าเฉลี่ยเคลื่อนที่พร้อมที่จะตอบสนองความต้องการที่แตกต่างกันการวิเคราะห์ความต้องการของตลาด . การใช้งานโดยทั่วไปมากที่สุดโดย traders ได้แก่ : Simple Moving Average Weighted Moving ค่าเฉลี่ยการเคลื่อนที่เฉลี่ย Average Average Moving Average (SMA) ค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ยเป็นค่าเฉลี่ยเคลื่อนที่เฉลี่ย โดยคำนวณจากชุดราคา (หรือช่วงเวลาที่รายงาน) โดยเพิ่มราคาเหล่านี้เข้าด้วยกันและหารจำนวนทั้งหมดด้วยจำนวนจุดข้อมูล สูตรนี้กำหนดราคาเฉลี่ยและคำนวณในลักษณะที่จะปรับ (หรือเคลื่อนย้าย) เพื่อตอบสนองต่อข้อมูลล่าสุดที่ใช้ในการคำนวณค่าเฉลี่ย ตัวอย่างเช่นหากคุณรวมเฉพาะอัตราแลกเปลี่ยน 15 ครั้งล่าสุดในการคำนวณโดยเฉลี่ยอัตราที่เก่าที่สุดจะลดลงโดยอัตโนมัติทุกครั้งที่มีการเปิดใช้ราคาใหม่ ผลการเปลี่ยนแปลงโดยเฉลี่ยในแต่ละราคาใหม่จะรวมอยู่ในการคำนวณและทำให้มั่นใจได้ว่าค่าเฉลี่ยจะขึ้นอยู่กับเฉพาะ 15 ราคาล่าสุดเท่านั้น ด้วยการทดลองและข้อผิดพลาดเพียงเล็กน้อยคุณสามารถกำหนดค่าเฉลี่ยเคลื่อนที่ที่เหมาะสมกับกลยุทธ์การซื้อขายของคุณได้ จุดเริ่มต้นที่ดีคือค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ยตามราคาล่าสุด 20 ราคา ค่าเฉลี่ยถ่วงน้ำหนัก (Weighted Moving Average - WMA) ค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักคำนวณด้วยวิธีเดียวกับค่าเฉลี่ยเคลื่อนที่แบบเรียบ แต่ใช้ค่าที่ถ่วงน้ำหนักเป็นเส้นตรงเพื่อให้แน่ใจว่าอัตราล่าสุดมีผลกระทบมากที่สุดต่อค่าเฉลี่ย ซึ่งหมายความว่าอัตราที่เก่าแก่ที่สุดที่รวมอยู่ในการคำนวณจะได้รับน้ำหนัก 1 ค่าที่เก่าสุดต่อไปจะได้รับการชั่งน้ำหนัก 2 และค่าที่เก่าที่สุดถัดไปจะได้รับน้ำหนัก 3 ตลอดจนอัตราล่าสุด ผู้ค้าบางรายพบว่าวิธีนี้มีความเกี่ยวข้องกับการกำหนดแนวโน้มโดยเฉพาะอย่างยิ่งในตลาดที่เคลื่อนไหวเร็ว ข้อเสียในการใช้ค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักคือเส้นค่าเฉลี่ยที่เกิดขึ้นอาจต่ำกว่าค่าเฉลี่ยเคลื่อนที่ที่แท้จริง อาจทำให้ยากต่อการพิจารณาแนวโน้มตลาดจากความผันผวน ด้วยเหตุนี้ผู้ค้าบางรายจึงชอบที่จะวางค่าเฉลี่ยเคลื่อนที่เฉลี่ยและค่าเฉลี่ยถ่วงน้ำหนักที่เคลื่อนไหวอยู่ในกราฟราคาเดียวกัน กราฟราคาเชิงเทียนที่มีค่าเฉลี่ยเคลื่อนที่แบบเรียบและค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักเฉลี่ย (EMA) ค่าเฉลี่ยเคลื่อนที่แบบเสวนามีค่าใกล้เคียงกับค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย แต่ในขณะที่ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายจะทำให้ราคาที่เก่าที่สุดมีราคาสูงขึ้น ค่าเฉลี่ยของช่วงที่ผ่านมาทั้งหมดโดยเริ่มจากจุดที่คุณระบุ ตัวอย่างเช่นเมื่อคุณเพิ่มการซ้อนทับค่าเฉลี่ยที่เป็นค่าเฉลี่ยของการเคลื่อนที่แบบเสวนาไปเป็นกราฟราคาคุณจะกำหนดจำนวนรอบการรายงานที่จะรวมไว้ในการคำนวณ สมมติว่าคุณระบุราคาล่าสุด 10 รายการ การคำนวณครั้งแรกนี้จะตรงกับค่าเฉลี่ยเคลื่อนที่แบบง่ายๆซึ่งอิงตามระยะเวลาการรายงาน 10 ครั้ง แต่เมื่อมีการใช้ราคาถัดไปการคำนวณใหม่จะยังคงมีราคาเดิม 10 ราคาบวกราคาใหม่เพื่อให้ได้ค่าเฉลี่ย ซึ่งหมายความว่าปัจจุบันมีการรายงาน 11 งวดในการคำนวณค่าเฉลี่ยเคลื่อนที่แบบเสวนาในขณะที่ค่าเฉลี่ยเคลื่อนที่เฉลี่ยจะขึ้นอยู่กับเพียง 10 อันดับล่าสุดเท่านั้น ตัดสินใจว่าจะใช้ค่าเฉลี่ยเคลื่อนที่เพื่อพิจารณาว่าค่าเฉลี่ยเคลื่อนที่ใดที่ดีที่สุดสำหรับคุณคุณต้องเข้าใจความต้องการของคุณก่อน หากวัตถุประสงค์หลักของคุณคือการลดเสียงรบกวนของราคาผันผวนอย่างต่อเนื่องเพื่อกำหนดทิศทางตลาดโดยรวมแล้วค่าเฉลี่ยเคลื่อนที่ที่แท้จริงของอัตรา 20 ครั้งล่าสุดอาจให้ระดับรายละเอียดที่คุณต้องการ หากคุณต้องการให้ค่าเฉลี่ยเคลื่อนที่ของคุณให้ความสำคัญกับอัตราล่าสุดจะมีค่าเฉลี่ยถ่วงน้ำหนักที่เหมาะสมกว่า อย่างไรก็ตามโปรดทราบว่าเนื่องจากค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักได้รับผลกระทบมากที่สุดจากราคาล่าสุดรูปร่างของเส้นเฉลี่ยอาจบิดเบี้ยวอาจส่งผลต่อการสร้างสัญญาณผิดพลาด เมื่อทำงานกับค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักคุณต้องเตรียมพร้อมสำหรับความผันผวนมากขึ้น ค่าเฉลี่ยเคลื่อนที่เฉลี่ยถ่วงน้ำหนัก 169 1996 - 2017 OANDA Corporation สงวนลิขสิทธิ์. ตระกูล OANDA, fxTrade และ OANDAs fx เป็นของ OANDA Corporation เครื่องหมายการค้าอื่น ๆ ที่ปรากฎในเว็บไซต์นี้เป็นทรัพย์สินของเจ้าของที่เกี่ยวข้อง การทำสัญญาซื้อขายเงินตราต่างประเทศกับสัญญาซื้อขายเงินตราต่างประเทศหรือผลิตภัณฑ์อื่น ๆ ที่ไม่มีการแลกเปลี่ยนเงินตราต่างประเทศมีความเสี่ยงสูงและอาจไม่เหมาะสำหรับทุกคน เราแนะนำให้คุณพิจารณาอย่างรอบคอบว่าการซื้อขายมีความเหมาะสมกับคุณหรือไม่ในแง่ของสถานการณ์ส่วนบุคคลของคุณ คุณอาจสูญเสียมากกว่าที่คุณลงทุน ข้อมูลในเว็บไซต์นี้มีลักษณะทั่วไป เราขอแนะนำให้คุณแสวงหาคำแนะนำด้านการเงินที่เป็นอิสระและมั่นใจได้ว่าคุณเข้าใจถึงความเสี่ยงทั้งหมดที่เกี่ยวข้องก่อนการซื้อขาย การซื้อขายผ่านแพลตฟอร์มออนไลน์ถือเป็นความเสี่ยงเพิ่มเติม ดูส่วนกฎหมายของเราที่นี่ การแพร่กระจายการแพร่กระจายทางการเงินจะใช้ได้เฉพาะกับลูกค้า OANDA Europe Ltd ที่อาศัยอยู่ในสหราชอาณาจักรหรือสาธารณรัฐไอร์แลนด์เท่านั้น CFDs ความสามารถในการป้องกันความเสี่ยงด้านราคาของ MT4 และอัตราส่วน Leverage Ratio เกิน 50: 1 ไม่สามารถใช้ได้กับชาวอเมริกัน ข้อมูลในไซต์นี้ไม่ใช่ข้อมูลที่อยู่ในประเทศที่การแจกจ่ายหรือการใช้โดยบุคคลใด ๆ จะขัดต่อกฎหมายหรือข้อบังคับของท้องถิ่น OANDA Corporation เป็นตัวแทนซื้อขายสัญญาซื้อขายล่วงหน้าของ Futures Commission และตัวแทนจำหน่ายรายย่อยที่จดทะเบียนกับ Commodity Futures Trading Commission และเป็นสมาชิกของ National Futures Association หมายเลข: 0325821 โปรดดูที่ ALFA FOREX INVESTOR ALFA ของ NFAs ตามความเหมาะสม บัญชี ULC ของ OANDA (Canada) Corporation มีให้สำหรับทุกคนที่มีบัญชีธนาคารของแคนาดา OANDA (Canada) Corporation ULC มีการกำกับดูแลโดยองค์การการลงทุนอุตสาหกรรมกฎระเบียบของแคนาดา (IIROC) ซึ่งรวมถึงฐานข้อมูลการตรวจสอบ IIROCs ที่ปรึกษาออนไลน์ (IIROC AdvisorReport) และบัญชีลูกค้าได้รับการคุ้มครองโดย Canadian Investor Protection Fund ภายในวงเงินที่กำหนด โบรชัวร์ที่อธิบายถึงลักษณะและขอบเขตของความคุ้มครองจะมีให้ตามคำขอหรือที่ cipf. ca OANDA Europe Limited เป็น บริษัท จดทะเบียนในประเทศอังกฤษที่หมายเลข 7110087 และมีที่อยู่จดทะเบียนตั้งอยู่ที่ชั้น 9a, Tower 42, 25 Old Broad St, London EC2N 1HQ ได้รับมอบอำนาจและควบคุมโดยผู้ควบคุมการแข่งขันทางการเงิน เลขที่: 542574 OANDA Asia Pacific Pte Ltd (บริษัท จดทะเบียนเลขที่ 200704926K) มีใบอนุญาตให้บริการด้านการตลาดทุนที่ออกโดยธนาคารกลางสิงคโปร์และได้รับอนุญาตจาก International Enterprise Singapore OANDA Australia Pty Ltd 160 ถูกควบคุมโดย Australian Securities and Investment Commission ASIC (ABN 26 152 088 349, AFSL No. 412981) และเป็นผู้ออกผลิตภัณฑ์หรือบริการบนเว็บไซต์นี้ สิ่งสำคัญสำหรับคุณในการพิจารณาคู่มือการให้บริการทางการเงินในปัจจุบัน (FSG) คำชี้แจงการเปิดเผยข้อมูลผลิตภัณฑ์ (PDS) ข้อกำหนดบัญชีและเอกสาร OANDA ที่เกี่ยวข้องอื่น ๆ ก่อนตัดสินใจลงทุนทางการเงิน เอกสารเหล่านี้สามารถพบได้ที่นี่ บริษัท OANDA Japan Co. , Ltd. First Type I Financial Instruments ผู้อำนวยการสำนักงาน Kanto Local Financial Bureau (Kin-sho) เลขที่ 2137 สถาบัน Financial Futures Association หมายเลข 1571 Trading FX andor CFDs for margin มีความเสี่ยงสูงและไม่เหมาะสำหรับทุกคน การสูญเสียอาจทำได้เกินกว่าการลงทุน 5..2 Smoothing Time Series Smoothing มักทำเพื่อช่วยให้เราสามารถมองเห็นรูปแบบแนวโน้มเช่นในชุดข้อมูลได้ดียิ่งขึ้น โดยทั่วๆไปจะทำให้เกิดความขรุขระไม่สม่ำเสมอเพื่อให้เห็นสัญญาณที่ชัดเจนขึ้น สำหรับข้อมูลตามฤดูกาลเราอาจปรับฤดูกาลตามฤดูกาลเพื่อให้เราสามารถระบุแนวโน้มได้ Smoothing ไม่ได้ให้แบบจำลอง แต่อาจเป็นขั้นตอนแรกที่ดีในการอธิบายคอมโพเนนต์ต่างๆของชุด ตัวกรองคำบางครั้งใช้เพื่ออธิบายขั้นตอนการทำให้ราบรื่น ตัวอย่างเช่นถ้าค่าที่ราบรื่นสำหรับเวลาหนึ่ง ๆ ถูกคำนวณเป็นชุดค่าผสมเชิงเส้นของการสังเกตสำหรับรอบเวลาอาจกล่าวได้ว่าเราใช้ตัวกรองเชิงเส้นกับข้อมูล (ไม่เหมือนกับการบอกว่าผลลัพธ์เป็นเส้นตรงด้วย ทาง) การใช้ค่าเฉลี่ยเคลื่อนที่ระยะยาวแบบเดิมคือในแต่ละจุดที่เรากำหนดค่าเฉลี่ยของค่าที่สังเกตได้รอบ ๆ ช่วงเวลาโดยเฉพาะ (อาจจะถ่วงน้ำหนัก) ตัวอย่างเช่นในเวลา t ค่าเฉลี่ยเคลื่อนที่ที่ศูนย์กลางของความยาว 3 ที่มีน้ำหนักเท่ากับจะเป็นค่าเฉลี่ยของค่าในช่วง t -1 t และ t1 หากต้องการลดฤดูกาลออกจากซีรีส์เพื่อให้เราสามารถมองเห็นแนวโน้มได้ดีขึ้นเราจะใช้ค่าเฉลี่ยเคลื่อนที่ที่มีช่วงเวลายาวนาน ดังนั้นในชุดที่ราบเรียบแต่ละค่าที่ราบเรียบได้รับการเฉลี่ยในทุกฤดูกาล ซึ่งอาจทำได้โดยการดูค่าเฉลี่ยเคลื่อนที่แบบด้านเดียวซึ่งคุณจะเฉลี่ยค่าทั้งหมดสำหรับข้อมูลปีก่อน ๆ ที่มีค่าหรือเป็นค่าเฉลี่ยเคลื่อนที่ที่ศูนย์กลางซึ่งคุณใช้ค่าทั้งก่อนและหลังเวลาปัจจุบัน สำหรับข้อมูลรายไตรมาสเช่นเราสามารถกำหนดค่าที่ราบรื่นสำหรับเวลา t เป็น (x t x t -1 x t-2 x t-3) 4 ซึ่งเป็นค่าเฉลี่ยของเวลานี้และ 3 ไตรมาสก่อนหน้า ในโค้ด R รหัสนี้จะเป็นตัวกรองแบบด้านเดียว ค่าเฉลี่ยเคลื่อนที่ที่ศูนย์กลางทำให้เกิดความยากลำบากเมื่อเรามีจำนวนช่วงเวลาในช่วงเวลาตามฤดูกาล (เช่นที่เรามักทำ) เพื่อให้เป็นไปตามฤดูกาลในข้อมูลรายไตรมาส เพื่อระบุแนวโน้มการประชุมตามปกติคือการใช้ค่าเฉลี่ยเคลื่อนที่ที่เรียบในเวลา t คือการทำให้เป็นไปตามฤดูกาลในข้อมูลรายเดือน เพื่อที่จะระบุแนวโน้มการประชุมตามปกติคือการใช้ค่าเฉลี่ยเคลื่อนที่ที่เรียบในเวลา t คือนั่นคือเราใช้น้ำหนัก 124 กับค่าในเวลา t6 และ t6 และน้ำหนัก 112 ถึงค่าทั้งหมดตลอดเวลาระหว่าง t5 และ t5 ในคำสั่งกรอง R ให้ระบุตัวกรองสองหน้าให้ดีเมื่อเราต้องการใช้ค่าที่มาทั้งก่อนและหลังการปรับให้เรียบ โปรดทราบว่าในหน้า 71 หนังสือของเราผู้เขียนใช้น้ำหนักที่เท่ากันทั่วทั้งค่าเฉลี่ยเคลื่อนที่ตามฤดูกาล ที่ถูกเกินไป ตัวอย่างเช่นราบเรียบรายไตรมาสอาจจะเรียบในเวลา t เป็นเดือนที่นุ่มนวลอาจใช้น้ำหนัก 113 กับค่าทั้งหมดจากครั้ง t-6 ถึง t6. รหัสที่ผู้เขียนใช้ในหน้า 72 ใช้ประโยชน์จากคำสั่ง rep ที่ทำซ้ำค่าเป็นจำนวนครั้งที่กำหนด พวกเขาไม่ได้ใช้พารามิเตอร์ตัวกรองภายในคำสั่ง filter ตัวอย่างที่ 1 การผลิตเบียร์รายไตรมาสในประเทศออสเตรเลียในบทที่ 1 และบทที่ 4 เราได้ทบทวนการผลิตเบียร์รายไตรมาสในออสเตรเลีย โค้ด R ต่อไปนี้สร้างชุดข้อมูลที่ราบรื่นขึ้นเพื่อให้เราเห็นรูปแบบแนวโน้มและวางแผนรูปแบบแนวโน้มนี้ในกราฟเดียวกับชุดข้อมูลเวลา คำสั่งที่สองจะสร้างและเก็บชุดที่ราบรื่นไว้ในวัตถุที่เรียกว่า trendpattern โปรดสังเกตว่าในตัวกรองคำสั่งพารามิเตอร์ที่ชื่อว่าตัวกรองจะให้ค่าสัมประสิทธิ์สำหรับการทำให้เรียบและด้านข้างของเรา 2 ทำให้มีการคำนวณค่าเรียบที่ศูนย์กลาง beerprod scan (beerprod. dat) ตัวกรอง trendpattern (beerprod, ตัวกรอง c (18, 14, 14, 18), sides2) พล็อต (beerprod, type b, แนวโน้มการเคลื่อนที่โดยเฉลี่ยรายปีหลัก) เส้น (trendpattern) นี่คือผลลัพธ์: เรา อาจลบรูปแบบแนวโน้มออกจากค่าข้อมูลเพื่อดูลักษณะตามฤดูกาลได้ดีขึ้น นี่คือวิธีการที่จะทำได้: seasonals beerprod - แนวโน้ม plotpattern (seasonals, ชนิด b, หลักตามฤดูกาลสำหรับการผลิตเบียร์) ผลดังนี้: ความเป็นไปได้อื่น ๆ สำหรับการเรียบชุดเพื่อดูแนวโน้มเป็นตัวกรองฟิลเตอร์ตัวกรองด้านเดียว (beerprod, filter c (14, 14, 14, 14) ด้าน 1) ด้วยเหตุนี้ค่าที่เรียบจะเป็นค่าเฉลี่ยของปีที่ผ่านมา ตัวอย่างที่ 2 การว่างงานรายเดือนในสหรัฐอเมริกาในการทำการบ้านสัปดาห์ที่ 4 คุณได้ดูตัวเลขการว่างงานในสหรัฐฯประจำเดือนสำหรับปีพ. ศ. 2491-2517 นี่คือการปรับให้เรียบเพื่อดูแนวโน้ม (trendunemploy, maintrend in U. S. Unemployment, 1948-1978, xlab Year) เฉพาะแนวโน้มที่ราบรื่นถูกวางแผนไว้ (2) แนวโน้มการไหลเวียนโลหิต คำสั่งที่สองจะระบุลักษณะของเวลาตามปฏิทินของชุดข้อมูล ที่ทำให้พล็อตมีแกนที่มีความหมายมากขึ้น พล็อตดังต่อไปนี้ สำหรับซีรี่ส์ที่ไม่ได้ใช้ตามฤดูกาลคุณไม่ต้องพึ่งพาช่วงเวลาใด ๆ สำหรับการทำให้เรียบคุณควรทดสอบกับค่าเฉลี่ยเคลื่อนที่ของช่วงเวลาที่แตกต่างกัน ระยะเวลาดังกล่าวอาจสั้นลง มีวัตถุประสงค์เพื่อขจัดขอบหยาบเพื่อดูแนวโน้มหรือรูปแบบที่อาจมีอยู่ Other Smoothing Methods (มาตรา 2.4) ส่วนที่ 2.4 อธิบายทางเลือกที่ซับซ้อนและมีประโยชน์มากมายสำหรับการปรับให้เรียบโดยเฉลี่ย รายละเอียดอาจดูไม่สมบูรณ์ แต่ไม่เป็นไรเพราะเราไม่ต้องการรับรายละเอียดมากเกินไปสำหรับวิธีการเหล่านี้ จากวิธีการอื่นที่ได้อธิบายไว้ในส่วน 2.4 อาจมีการใช้ lowess (การถดถอยถ่วงน้ำหนักแบบถ่วงน้ำหนักในประเทศ) อย่างกว้างขวางที่สุด ตัวอย่างที่ 2 ต่อเนื่องพล็อตต่อไปนี้เป็นเส้นแนวโน้มที่เรียบสำหรับชุดการว่างงานในสหรัฐฯซึ่งพบว่าใช้ lowess เรียบกว่าซึ่งเป็นจำนวนมาก (23) มีส่วนทำให้การคาดการณ์เรียบแต่ละครั้ง โปรดทราบว่าสิ่งนี้ทำให้ชุดมีความขันสูงกว่าค่าเฉลี่ยเคลื่อนที่ คำสั่งที่ใช้คือการว่างงาน (การว่างงาน, เริ่มต้น c (1948,1), freq12) พล็อต (lowess (การว่างงาน, f 23), Lowess หลักของการทำให้ราบรื่นของการว่างงานในสหรัฐ) Single Exponential Smoothing สมการพยากรณ์พื้นฐานสำหรับการเรียบง่ายแบบทวีคูณ เราคาดว่าค่าของ x ในเวลา t1 จะเป็นค่าที่รวมถ่วงน้ำหนักของค่าที่สังเกตได้ ณ เวลา t และค่าพยากรณ์ที่เวลา t แม้ว่าวิธีการนี้จะเรียกว่าวิธีการปรับให้เรียบ (smoothing method) ซึ่งใช้เป็นหลักในการคาดการณ์ระยะสั้น ค่าของเรียกว่าการปรับให้ราบเรียบ ด้วยเหตุผลใด 0.2 เป็นทางเลือกที่นิยมเริ่มต้นของโปรแกรม นี่ทำให้น้ำหนักของ. 2 ในการสังเกตการณ์ล่าสุดและน้ำหนัก 1 .2 .8 ในการคาดการณ์ล่าสุด มีค่าค่อนข้างน้อยการทำให้ราบเรียบจะค่อนข้างกว้างขึ้น ด้วยค่าที่ค่อนข้างใหญ่การทำให้ราบเรียบนั้นค่อนข้างน้อยลงเมื่อน้ำหนักมากขึ้นจะทำให้ค่าที่สังเกตได้ นี่คือวิธีการคาดการณ์ล่วงหน้าที่ง่ายกว่าหนึ่งขั้นตอนที่เห็นได้ชัดก่อนว่าไม่ได้ต้องการแบบจำลองสำหรับข้อมูล ในความเป็นจริงวิธีนี้เทียบเท่ากับการใช้รูปแบบ ARIMA (0,1,1) โดยไม่มีค่าคงที่ ขั้นตอนที่เหมาะสมที่สุดคือให้พอดีกับรูปแบบ ARIMA (0,1,1) กับชุดข้อมูลที่สังเกตได้และใช้ผลลัพธ์เพื่อหาค่าของ นี่เป็นวิธีที่ดีที่สุดในแง่ของการสร้างสิ่งที่ดีที่สุดสำหรับข้อมูลที่ได้สังเกตมาแล้ว แม้ว่าเป้าหมายจะราบเรียบและการคาดการณ์ล่วงหน้าหนึ่งก้าวความเท่าเทียมกันของรูปแบบ ARIMA (0,1,1) จะนำมาซึ่งจุดดีขึ้น เราไม่ควรสุ่มสี่สุ่มห้าใช้การทำให้เรียบตามที่ระบุเนื่องจากกระบวนการอ้างอิงอาจไม่ได้รับการสร้างแบบจำลองโดย ARIMA (0,1,1) ARIMA (0,1,1) และ Exponential Smoothing Equivalence พิจารณาอาร์เรย์ (0,1,1) ด้วยค่าเฉลี่ย 0 สำหรับความแตกต่างแรก xt - x t-1: เริ่มต้น amp amp amp amp xt theta1 wt amp amp xt theta1 (xt สิ่งที่ t) amp amp (1 theta1) xt - theta1 มีแนวโน้ม ถ้าเราปล่อยให้ (1 1) และดังนั้น - (1) 1 เราจะเห็นความเท่าเทียมกันของสมการ (1) ข้างต้น ทำไมถึงเรียกวิธีนี้ว่า Exponential Smoothing นี่จะให้ผลลัพธ์ต่อไปนี้: เริ่มต้นแอมป์ amp amp alpha xt (อัลฟา 1 alpha x อัลฟา) amp amp amp alpha xt alpha (1-alpha) x (1-alpha) 2hat end Continue ในรูปแบบนี้โดยการแทนที่อย่างต่อเนื่องสำหรับค่าที่คาดการณ์ไว้ทางด้านขวาของสมการ สิ่งนี้นำไปสู่: alpha alpha (1 alpha) x alpha (1-alpha) 2 x จุด alpha (1-alpha) jx alpha alpha (1-alpha) x1 text สมการ 2 แสดงให้เห็นว่าค่าพยากรณ์ที่คาดว่าจะเป็นค่าเฉลี่ยถ่วงน้ำหนัก ของค่าที่ผ่านมาทั้งหมดของซีรีส์ด้วยการเปลี่ยนน้ำหนักอย่างมากในขณะที่เราย้ายกลับมาอยู่ในซีรีส์ การเพิ่มประสิทธิภาพ Exponential ที่ดีที่สุดใน R โดยทั่วไปเราเพียงแค่ใส่ข้อมูล ARIMA (0,1,1) และกำหนดค่าสัมประสิทธิ์ เราสามารถตรวจสอบพอดีของราบรื่นโดยการเปรียบเทียบค่าที่คาดการณ์ไว้กับชุดจริง การเพิ่มความลื่นไหลชี้แจงมีแนวโน้มที่จะถูกนำมาใช้เป็นเครื่องมือในการคาดการณ์มากกว่าความเรียบลื่นจริงดังนั้นเราจึงต้องการดูว่าเรามีความเหมาะสมหรือไม่ ตัวอย่างที่ 3 n การสังเกตการณ์รายเดือน 100 ลอการิทึมของดัชนีราคาน้ำมันในสหรัฐอเมริกา ชุดข้อมูลคือ ARIMA (0.1,1) พอดีใน R ให้ค่าสัมประสิทธิ์ (0.3877) ของ MA (1) ดังนั้น (1 1) 1.3877 และ 1- -0.3877 สมการพยากรณ์สมรรถนะการคำนวณหาค่าการทำให้ราบเรียบเป็นหมวก 1.3877xt - 0.3877hat t เวลา 100 ค่าที่สังเกตได้ของชุดคือ x 100 0.86601 ค่าที่คาดการณ์ไว้สำหรับซีรีส์ในเวลานั้นคือดังนั้นการคาดการณ์เวลา 101 คือหมวก 1.3877x - 0.3877 วินาที 1.3877 (0.86601) -0.3877 (0.856789) 0.8696 ต่อไปนี้เป็นวิธีการที่เรียบเนียนขึ้นกับชุดข้อมูล มันพอดี เป็นสัญญาณที่ดีสำหรับการคาดการณ์จุดประสงค์หลักสำหรับเรื่องนี้ที่นุ่มนวลขึ้น นี่คือคำสั่งที่ใช้ในการสร้างเอาท์พุทสำหรับตัวอย่างนี้: พล็อตการสแกน oilindex (oildata. dat) (oilindex, b, log หลักของดัชนีดัชนีน้ำมัน) expsmoothfit arima (oilindex, order c (0,1,1)) expsmoothfit เพื่อดูผลลัพธ์ของ Arima ที่คาดการณ์ค่าการจัดเตรียมน้ำมัน (oilindex, typeb, Exponential Smoothing หลักของ Log of Oil Index) เส้น (คาดการณ์) 1.3877oilindex100-0.3877predicteds100 การคาดการณ์สำหรับเวลา 101 Double Exponential Smoothing การปรับความเปรียบเปรยแบบทวีคูณสองครั้งอาจใช้เมื่อเอาเปรียบ แนวโน้ม (ระยะยาวหรือระยะสั้น) แต่ไม่มีฤดูกาล โดยพื้นฐานแล้ววิธีการนี้จะสร้างการคาดการณ์โดยการรวมการประมาณค่าของแนวโน้ม (ความลาดเอียงของเส้นตรง) และระดับ (โดยทั่วไปการสกัดเส้นตรง) ใช้น้ำหนักหรือน้ำหนักที่ต่างกันสองแบบเพื่อปรับปรุงส่วนประกอบทั้งสองนี้ในแต่ละครั้ง ระดับที่ราบรื่นมากหรือน้อยเท่ากับการเรียบอย่างเรียบง่ายของค่าข้อมูลและแนวโน้มที่ราบรื่นมากหรือน้อยเท่ากับการทำให้เรียบแบบเรียบง่ายของความแตกต่างแรก ขั้นตอนนี้เทียบเท่ากับการติดตั้งรุ่น ARIMA (0,2,2) โดยไม่มีค่าคงที่ที่สามารถนำมาใช้กับพอดีกับ ARIMA (0,2,2) (1-B) 2 xt (1teta1B theta2B2) น้ำหนัก การเดินเรือ
No comments:
Post a Comment